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Role of Reactive Oxygen Species in Vascular Remodeling
Associated with Pulmonary Hypertension
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ABSTRACT

Several manifestations of neonatal pulmonary hypertension are associated with vascular remodeling, result-
ing in increased muscularity of the small pulmonary arteries. Abnormal structural development of the pulmo-
nary vasculature has been implicated in persistent pulmonary hypertension of the newborn (PPHN). Increased
plasma levels of the vasoconstrictor endothelin-1 (ET-1) have been demonstrated in patients with PPHN,
which is likely to contribute to hypertension. In addition, several studies have identified a role for ET-1 in the
proliferation of vascular smooth muscle cells (SMCs), suggesting that ET-1 may also be involved in the vascu-
lar remodeling characteristic of this disease. However, the mechanisms of ET-1-induced SMC proliferation
are unclear and appear to differ between cells from different origins within the vasculature. In SMCs isolated
from fetal pulmonary arterial cells, ET-1 stimulated proliferation via an induction of reactive species (ROS).
Furthermore, other lines of evidence have demonstrated the involvement of ROS in ET-1-stimulated SMC
growth, suggesting that ROS may be a common factor in the mechanisms involved. This review discusses the
potential roles for ROS in the abnormal pulmonary vascular development characteristic of PPHN, and the
treatment strategies arising from our increasing knowledge of the molecular mechanisms involved. Antioxid.
Redox Signal. 5,759-769.

PERSISTENT PULMONARY
HYPERTENSION OF THE NEWBORN

ITH THE INITIATION OF VENTILATION and oxygenation at

birth, pulmonary vascular resistance decreases and pul-
monary blood flow increases. However, in a number of clini-
cal conditions, there is a failure of the pulmonary circulation
to undergo the normal transition to postnatal life, resulting in
persistent pulmonary hypertension of the newborn (PPHN)
(1,7,59,103). In PPHN, pulmonary vascular resistance does
not decrease normally at birth, resulting in pulmonary hyper-
tension, right-to-left shunting, and hypoxemia (88). Newborns
who die of PPHN exhibit both an increase in the thickness of
the smooth muscle layer within small pulmonary arteries and
an extension of this muscle to nonmuscular arteries (25). Often,
microvascular thrombi occlude these arteries, and there is also
proliferation of adventitial tissues (55). These structural changes
indicate that in utero events have altered the pulmonary circu-

lation. These abnormalities are associated with an increase in
the expression of genes that induce vasoconstriction and a re-
duction in those that induce vasodilation. In particular, there
is an inability to regulate properly the production of endothe-
lin-1 (ET-1) such that plasma ET-1 levels are increased (7).
Furthermore, there is a down-regulation of genes involved in
the production of the vasodilator nitric oxide (NO). The ET-1
and NO cascades are coordinately regulated (46), although
the complex mechanisms involved are incompletely understood.
In addition, the role of ET-1 and NO in vascularremodeling is
unclear.

ENDOTHELIN-1

ET-1, a 21-amino acid polypeptide produced by vascular
endothelial cells (ECs), has potent vasoactive properties and
is mitogenic for vascular smooth muscle cells (SMCs) (24,
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FIG. 1. Regulation of vascular tone by NO and ET-1 signal-
ing in pulmonary arterial endothelial and smooth muscle
cells. sGC, soluble guanylyl cyclase.

106). ET-1 is produced by the cleavage of a 203-amino acid
precursor (preproET-1) to form proET-1 (Big ET-1). Big ET-1
is then cleaved by endothelin-converting enzyme-1 (ECE-1)
into its functional form (95). The complex pulmonary vasoac-
tive effects of ET-1, which may include vasoconstriction and/
or vasodilation, are mediated by at least two different recep-
tors: ET, and ET,. ET, receptors, located predominantly on
vascular SMCs, mediate vasoconstriction, whereas ET} re-
ceptors, located on vascular ECs, mediate vasodilation (3, 82,
86). Increasing data suggest that NO and ET-1 regulate each
other through an autocrine feedback loop (46). For example,
stimulation of endothelial nitric oxide synthase (eNOS) activ-
ity occurs via ET, receptor activation, whereas NO-cyclic GMP
(cGMP) productionincreases ET, receptors in vascular SMCs
and inhibits ET-1 secretion and gene expression in vascular
ECs (11, 77). Figure 1 illustrates the regulation of vascular tone
by the NO and ET-1 signaling cascades. Animal studies sug-
gest that basal ET-1 production has minimal effects on normal
fetal, transitional, and postnatal pulmonary vascular tone. How-
ever, both animal and human studies suggest that ET-1 plays a
significant role in pulmonary vascular pathophysiology.

ET-1-MEDIATED VASCULAR SMC
PROLIFERATION IN PPHN

ET, receptor antagonism attenuates fetal pulmonary hy-
pertension and inhibits the SMC hypertrophy normally asso-
ciated with ductal ligation (30). This illustrates the important
role played by ET-1 in mediating the vascular remodeling
characteristic of PPHN. Due to conflicting reports, the role of
ET-1 in vascular SMC proliferation remains controversial (26,
32, 34, 84). However, it has been shown that ET-1 has a direct
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mitogenic effect on pulmonary arterial SMCs isolated from
fetal lambs (101). This effect was mediated via an ET , receptor-
induced increase in superoxide production, and was prevented
by ET, receptorblockade or by antioxidanttreatment. The path-
way likely involves protein G;, phosphatidylinositol 3-kinase,
and NADPH oxidase because pharmacologic inhibitors of these
proteins prevented ET-1-induced SMC proliferation. Figure 2
shows the potential signaling pathway for ET-1-mediated pro-
liferation of fetal pulmonary arterial SMCs, and highlights
the sites of action of pharmacologic inhibitors.

In pulmonary arterial SMCs isolated from fetal lambs, in-
hibition of NADPH oxidase reduces the ET-1-mediated mito-
genic signal and the increase in reactive oxygen species (ROS)
production, indicating that this enzyme lies downstream of
the activation of the ET, receptor (101). Superoxide anion
formation has long been known to be vital to the microbicidal
activity of phagocytes such as neutrophils, macrophages, and
monocytes (18). More recently, it has become apparent that
production of ROS also occurs in nonphagocytic cells such as
fibroblasts (56), glomerular mesangial cells (71), ECs (51),
and SMCs (23, 43). The vascular NADPH oxidase enzyme
complex appears to be membrane-associated, catalyzing the
one-electron reduction of oxygen using NADPH or NADH as
the electron donor. One of the important attributes of the vas-
cular oxidase is that it appears to respond to external signals
to generate superoxide. Activation of the oxidase has been dem-
onstrated for angiotensin II (23), serotonin (43), thrombin (67),
platelet-derived growth factor (PDGF) (50), tumor necrosis
factor-a (56), as well as by biomechanical forces (28). How-
ever, it remains unclear as to how this is activation is mediated.
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FIG. 2. ET-1-induced proliferation of fetal pulmonary ar-
terial SMCs involves the activation of ET, receptor, pro-
tein G, phosphatidylinositol 3-kinase (PI,K), and NADPH
oxidase (NADPH ). Sites of action of the pharmacologic in-
hibitors PD156707, pertussis toxin (PTX), wortmannin, and
diphenyleneiodonium (DPI) are shown.
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Treatments that increased cellular levels of ROS also stim-
ulated proliferation in pulmonary arterial SMCs isolated from
fetal lambs (101). This is in agreement with other studies in
which the addition of exogenous hydrogen peroxide (H,0,)
or pharmacologic agents that can increase ROS generation
appear to stimulate the activation of mitogen-activated pro-
tein (MAP) kinases and stimulate cell growth (6, 74,75, 91).
Further studies have demonstrated that SMCs prepared from
the systemic circulation can respond to exogenous growth fac-
tor stimulation by increasing intracellular production of ROS.
For example, PDGF stimulates the production of H,O, in vas-
cular SMCs and leads to SMC growth (91). Conversely, if the
PDGF-stimulated rise in H,0, is prevented, the proliferative
response to PDGEF is blunted (91). Similarly, thrombin stimu-
lates both superoxide and H,O, production in SMCs (67). As
with PDGEF, treatment with catalase or superoxide dismutase
(SOD) to reduce the levels of ROS inhibits thrombin-induced
proliferation (67). A recent study demonstrated ET-1-induced
activation of MAP kinases in rat aortic SMCs (40). Further-
more, antioxidants and an inhibitor of NADPH oxidase were
found to prevent this activation and attenuated ET-1-induced
proliferation (40). Thus, overall the available data suggest
that ROS mediate growth factor-induced vascular SMC pro-
liferation by activating molecules that stimulate cell cycle
progression.

ABNORMAL REGULATION OF NO
AND ET-1 CASCADES IN PPHN

The effects of ET-1-induced vascular remodeling are likely
to be compounded by increased pulmonary vasoconstriction
in PPHN. In an animal model of PPHN, ligation of the ductus
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FIG. 3. Abnormal regulation of the NO and ET-1 signaling
pathways in PPHN resulting in increased vasoconstriction
and SMC proliferation. sGC, soluble guanylyl cyclase.
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arteriosus is associated with a decrease in eNOS expression
(66). In addition, there is an increase in the expression of pre-
proET-1 and a decrease in the expression of ET,, receptor. These
results suggest a decrease in NO concentrations, thereby de-
creasing pulmonary vasodilator activity. Furthermore, increased
ET-1 concentration and limited ET} receptor activation would
increase pulmonary vasoconstrictor activity. More recent data
obtained by constricting the ductus arteriosus in utero dem-
onstrated a 106% increase in plasma ET-1 levels and a con-
comitant 43% decrease in total NO synthase (NOS) activity
(66). ET, receptor antagonism completely blocked the vaso-
constriction and preserved NOS activity. In addition, it has
been shown that peroxynitrite, formed in the reaction be-
tween superoxide and NO, can nitrate and irreversibly inhibit
eNOS (102). This nitration was found to be significantly re-
duced by ET, receptor blockade (102). These data taken to-
gether suggest that ET-1-ET, receptor-mediated increases in
superoxide production with a resultant increase in SMC pro-
liferation and NOS inhibition, coupled with ET, receptor-
mediated vasoconstriction, may play a significant role in the
development of PPHN. Figure 3 illustrates the abnormal reg-
ulation of the NO and ET-1 cascades in PPHN relative to the
normal regulation of vascular tone demonstrated in Fig. 1.

BIOMECHANICAL FORCES AND
ROS PRODUCTION

Fluid shear stress is defined as the tractive force produced
by moving a viscous fluid (blood) on a solid body (vessel wall),
constraining its motion (62). When ECs are subjected to shear
stress, diverse responses are initiated, some of which occur
within minutes and others that develop over several hours or
days (63). For example, NOS activity, NO production,and eNOS
mRNA and protein levels are increased in ECs exposed to
shear stress (35, 37, 38, 64, 65, 73, 96, 99). In addition, shear
stress stimulates growth factor production by ECs, including
basic fibroblast growth factor (bFGF) (56) and PDGF (47,
58). bFGF also up-regulates signaling by vascular endothelial
growth factor (VEGF) by elevating levels of the VEGF recep-
tor Flk-1 in vascular ECs (68). Furthermore, shear stress can
increase Flk-1 expression via a bFGF-independent pathway
(2). Pulsatile blood flow generates mechanical stretch, or cyclic
strain, within the vessel walls. Cyclic strain has been shown
to increase growth factor production by vascular ECs (78), al-
though the mechanisms involved are unclear. Cyclic stretch
has also been demonstrated to induce growth factor expression
and signaling in vascular SMCs, including FGF-2 and VEGF
(69) and PDGEF receptor (93).

ROS play an important role in signal transduction path-
ways mediated by growth factors, and induce proliferation of
vascular SMCs in response to ET-1 (101) and PDGF (50, 91).
NADPH oxidase is a major source of ROS in vascular SMCs
(23,101) and ECs (51), and has been shown recently to be in-
volved in VEGF-mediated EC proliferation (98).

Biomechanical forces can also induce ROS production by
mechanisms that may be independent of growth factors. Os-
cillatory shear stress increased NADH oxidase activity and
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superoxide production in human umbilical vein endothelial
cells (HUVEC ) after 1 h, with a progressiveincrease until 24
h (19). In addition, oscillatory shear stress was found to in-
duce a time-dependent increase in the expression of the redox-
sensitive gene heme oxygenase-1 (HO-1), which was blocked
by antioxidant treatment. In contrast, laminar shear stress gen-
erated an increase in NADH oxidase activity and HO-1 ex-
pression after 5 h, although levels had returned to baseline by
24 h. Furthermore, laminar, but not oscillatory shear stress
increased the expression of the superoxide scavenger Cu/Zn
SOD after 24 h, suggesting that this type of biomechanical
force can activate mechanisms to compensate for the oxida-
tive stress (19). This finding has important implications for the
onset of atherosclerosis, where oscillatory flow is thought to
induce lesion formation, whereas unidirectional flow might
be protective (36). The mechanisms that regulate these differ-
ent patterns of gene expression are unknown, but may involve
redox-sensitive transcription factors. For example, the human
Cu/Zn SOD promoter region contains two putative binding
sites for activator protein-1 (AP-1) (33), while studies of the
human HO-1 gene have identified potential binding sites for
AP-1 and nuclear factor-k B (NFkB) (42). In bovine aortic en-
dothelial cells (BAECs), fluid shear stress activated the redox-
sensitive signaling molecule proline-rich tyrosine kinase 2
(PYK?2) via a pathway involving ROS-dependent activation of
Src (92). Thus ROS may play multiple roles in the response of
ECs to shear stress.

Porcine aortic ECs increased ROS production after expo-
sure to cyclic strain via the activationof NADPH oxidase (27).
Cyclic strain also increased NADPH oxidase activity and ROS
production in HUVECS; this was associated with an increase
in the expression of p22phox (53), a critical subunit of vascu-
lar NADPH oxidase (97). Furthermore, cyclic strain increased
the activity of NFkB, which was abrogated by NADPH oxi-
dase inhibition, indicating a downstream role for this redox-
sensitive transcription factor in HUVECs (53). In BAECs,
cyclic strain also induced the activation of PYK2 via a path-
way involving protein kinase C-mediated NADPH oxidase
activation, followed by ROS-dependent phosphorylation of Src
(15). Comparisons between the pathways leading to cyclic
strain-induced and shear stress-induced(92) activation of PYK2
in BAECs may help to elucidate the mechanisms by which
ECs detect multiple types of biomechanical force.

Overall, these data suggest that the type of biomechanical
force and the location within the vasculature may influence
the downstream effects of ROS. Increased growth factor
and/or ROS production within the pulmonary vasculature in
response to biomechanical forces may lead to smooth muscle
proliferation via similar mechanisms to those in PPHN.

ABNORMAL REGULATION OF ET-1 AND
NO IN PULMONARY HYPERTENSION
SECONDARY TO INCREASED
PULMONARY BLOOD FLOW

Children with certain congenital heart defects exhibit an
increase in pulmonary blood flow, which is associated with
vascular remodeling. Although little is known about the mech-
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anisms involved, it is possible that the increased shear stress
within the pulmonary vasculature elevates ROS levels via the
pathways discussed above. This increase in ROS may then lead
to SMC proliferation via mechanisms similar to those evident
in PPHN. Pulmonary morphometric analysis of the lungs of
children with congenital heart defects shows altered pulmonary
vascular growth and remodeling correlating with the child’s he-
modynamic state (70). These changes are characterized by ab-
normal extension of muscle into small peripheral arteries and
a mild medial hypertrophy of normally muscular arteries, more
severe medial hypertrophy of normally muscular arteries, and
reduced arterial number and concentration. Several studies
demonstrate increased ET-1 plasma concentrations in children
with congenital heart disease associated with increased pulmo-
nary blood flow and pulmonary hypertension (100, 105, 107).
Recently, a model that mimics a congenital heart defect with
increased pulmonary blood flow was established in the lamb
with in utero placement of an aorta-to-pulmonary artery vas-
cular graft (76). This model is associated with increased pul-
monary blood flow and pressure. At 4 weeks of age, these
“shunt” lambs have clinical and pathologic sequelae similar
to children with congenital heart defects associated with in-
creased pulmonary blood flow and pulmonary hypertension.
In shunt animals, plasma ET-1 concentrations were found to
be higher (104), and levels of ECE-1 mRNA and protein were
elevated in peripheral lung tissue relative to age-matched con-
trols (10). Furthermore, ET, receptor mRNA and protein lev-
els were increased, whereas ET, receptor mRNA and protein
levels were decreased, in peripheral lung tissue from the shunts
relative to controls (10). The predicted result of these gene al-
terations is increased production of ET-1, increased ET-1-me-
diated pulmonary vasoconstriction,and decreased ET-1-mediated
vasodilation. Shunt lambs also exhibit physiologic alterations
in the NO-cGMP cascade, including a selective impairment of
endothelium-dependent pulmonary vasodilation. This is sug-
gestive of decreased NO activity because the endothelium-
dependent pulmonary vasodilating effects of acetylcholine and
ATP were attenuated compared with those in control lambs
(76). Using isolated pulmonary arteries, it was found that re-
moval of superoxide enhanced endothelium-dependent relax-
ation in shunt vessels (89). Thus, the endothelial dysfunction
associated with pulmonary hypertensionmay be due, in part, to
excessive superoxide production. This may be linked to increased
ET-1 signaling, although additional studies will be required to
determine if this is so. Despite decreased endothelial activity
in the shunt model, expression of eNOS is elevated (8). Shear
stress-induced eNOS transcription, arising from increased pul-
monary blood flow, may be involved. However, excessive lev-
els of superoxide present in this model are predicted to inhibit
NOS activity (85) and NO bioactivity (87).

A potential role for ROS in the vascular remodeling seen in
the shunt model remains to be identified. Several growth fac-
tors have been shown to activate NADPH oxidase, including
angiotensin II (23) and PDGF (50). Activation of NADPH ox-
idase by serotonin stimulates the proliferation of bovine pul-
monary arterial SMCs via a pathway involving the MAP kinases
ERK1/2 (43, 44). Furthermore, ET-1 stimulates the prolifera-
tion of SMCs isolated from the pulmonary arteries of fetal
lambs via NADPH oxidase-catalyzed ROS production (101).
However, a link between increased pulmonary blood flow, el-
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evated ET-1 signaling, increased ROS production, and SMC
proliferation has not yet been established in the shunt model.
Treatment of SMCs isolated from the pulmonary arteries of
age-matched animals may reveal if ET-1, or other growth
factors, can stimulate SMC proliferation via increased ROS
production.

ROLE OF ROS IN ET-1 REGULATION

Several lines of evidence suggest that ROS can regulate cel-
lular levels of ET-1 and mediate its secretion. ET-1 release was
increased by HUVECs exposed to cyclic strain, which was
blocked by pretreatment with antioxidants (16). These authors
then showed an increase in ET-1 promoter activity in BAECs
exposed to cyclic strain, which was also blocked by pretreat-
ment with antioxidants. Further studies suggested a role for the
transcription factor complex AP-1 in the ROS-mediated in-
crease in ET-1 promoter activity in BAECs (16). Interestingly,
ET-1 was found to increase AP-1 DNA binding in rat aortic
SMCs via a pathway involving ROS (40). Furthermore, ET-1
stimulated AP-1 activation in rat SMCs via ET , receptor bind-
ing and ROS production (22). This raises the possibility that
abnormal regulation of ET-1 expression in PPHN may involve
a positive feedback loop; ET, receptor-mediated increases in
superoxide production from SMCs may result in increased ET-
1 promoter activity and secretion in the adjacent ECs. In the
ductal ligation model of PPHN, levels of preproET-1 and
plasma ET-1 were elevated (66). However, additional studies
are required to determine if ROS regulate ET-1 expression and
release in fetal pulmonary arterial ECs. Furthermore, data ob-
tained from different cell types must be viewed with caution.
For example, ROS increased, whereas ROS scavengers de-
creased, ET-1 release by human mesangial cells (29). Con-
versely, superoxide has been shown to inhibit ECE-1 activity
and decrease ET-1 levels in adult cardiomyocytes (45).

ROLE OF ROS IN NO REGULATION

ROS can influence the bioavailability of NO via several
different mechanisms. Superoxide reacts rapidly with NO to
form peroxynitrite. Thus, increased ET-1-induced superoxide
production in PPHN could potentially reduce even further the
levels of bioactive NO, thereby increasing vasoconstriction.
The role of NO in SMC growth has not been determined, but
it is possible that NO prevents excessive proliferation by reg-
ulating superoxide levels. Thus, the ET-1 mediated proliferation
of SMCs in PPHN may be compounded by reduced bioavail-
ability of NO.

ROS appear to be involved in the regulation of eNOS gene
expression, although the mechanisms involved are unclear. In
one study, it was found that antioxidants increased transcription
of the eNOS gene in BAECs (72). However, these investigators
later demonstrated that H,0O,, a prooxidant, also increased
eNOS promoter activity, as well as eNOS mRNA stability in the
same cell type (20). Analysis of the human eNOS promoter se-
quence has identified potential binding sites for several redox-
sensitive transcription factors, including AP-1 and NF«kB (49).
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However, the possibility of redox regulation of eNOS gene ex-
pression by these factors, and in particular in pulmonary ECs in
the fetal state, has not yet been investigated.

Peroxynitrite has been shown to inhibit the activity of puri-
fied eNOS protein (102), presumably by nitration of critical
tyrosine residues. Increased levels of peroxynitrite and nitrated
proteins have not yet been demonstrated in PPHN, but this
may represent one mechanism of eNOS enzyme inhibition in
this disease. However, the preservation of NOS activity in
ductal ligation lambs infused with an ET, receptor antagonist
(66) suggests that ET-1-induced superoxide production exerts
a significant effect on eNOS in PPHN. Furthermore, increased
superoxide levels result in the inhibition of eNOS in ECs ex-
posed to NO donors (85). This inhibition was reduced in cells
overexpressing SOD (12), illustrating the role for superoxide.
NO-mediated eNOS inhibition and the implications for in-
haled NO therapy are discussed below.

INHALED NO THERAPY

Exogenously administered inhaled NO is currently utilized
as an adjuvant therapy for a number of pulmonary hyperten-
sive disorders, including infants with PPHN. In both animal
and human studies, inhaled NO (5-80 ppm) induces rapid and
selective pulmonary vasodilation (4, 48, 79, 80). When ad-
ministered into the airways in gaseous form, NO diffuses into
pulmonary vascular SMCs where it increases cGMP levels,
causing potent pulmonary vasodilation. No systemic vasodi-
lation occurs because NO is rapidly inactivated by binding
with hemoglobin when it reaches the intravascular space (31).
Nonrandomized studies demonstrate that inhaled NO decreases
pulmonary vascular resistance (PVR) in patients with congenital
heart disease (14, 52, 83). In addition, NO decreases PVR and
improves oxygenation in adults and children with acute lung
injury, although recent randomized trials suggest that the ef-
fect is transient and does not change long-term outcome (4,
80). Similarly, several recent multicentered randomized trials
have demonstrated that inhaled NO improves oxygenation and
reduces the need for extracorporeal life support in newborns
with PPHN (79). Although these preliminary data are encour-
aging, several concerns regarding the safety of inhaled NO re-
main. One of the most important issues is the safety of acute
NO withdrawal. Several studies have noted a potentially life-
threatening increase in PVR on acute withdrawal of inhaled
NO (5, 17, 41, 57). This “rebound pulmonary hypertension”
is manifested by an increase in PVR, compromised cardiac
output, and/or severe hypoxemia Exogenous NO exposure in-
hibits endogenous eNOS activity (9), suggesting that a tran-
sient decrease in endogenous eNOS activity during inhaled
NO therapy may be a potential mechanism for rebound pul-
monary hypertension. Possible causes of rebound pulmonary
hypertension and preventative treatments are discussed below.

NO DONORS

Administration of organic nitrates such as nitroglycerin
stimulates vasodilation, although the development of nitrate
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tolerance shortly after treatment limits their usefulness. The
underlying mechanisms are unclear and are likely to be multi-
factorial (21). One study demonstrated a twofold increase in
vascular superoxide production after 3 days of nitroglycerin
treatment (60). Furthermore, tolerance was prevented by cotreat-
ment with SOD, highlighting the role for ROS in this inibition
(60). A subsequentstudy identified a membrane-bound NADH
oxidase as a likely source of superoxide production (61), and
more recently the same investigators demonstrated a role for
ET-1 in the pathway (39). It is likely that the increase in su-
peroxide inactivates the NO released from nitroglycerin by
the formation of peroxynitrite, resulting in nitrate tolerance.

ET RECEPTOR ANTAGONISTS

Recently, both combined ET, and ET,, receptor and selec-
tive ET, receptor antagonists have been developed for poten-
tial clinical use. In adults with advanced pulmonary vascular
disease, bosentan, a combined ET receptor antagonist, decreases
PVR and improves exercise tolerance (81). Randomized trials
are currently ongoing. Other potential therapeutic uses for ET
receptor antagonists include PPHN and pulmonary hyperten-
sion associated with congenital heart disease. For example,
ET, receptor blockade prevents ET-1-induced fetal pulmo-
nary arterial SMC proliferation (101), and has been shown to
attenuate the vascular remodeling normally associated with
ductal ligation in lambs (30). In addition, ET receptor antago-
nists induce potent pulmonary vasodilation in a lamb model
of congenital heart disease with increased pulmonary blood
flow. Unfortunately, human data are currently lacking. Lastly,
in a recent study looking at the causes of rebound pulmonary
hypertension, plasma ET-1 levels were increased by 119.5%
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FIG. 4. Potential mechanism of eNOS inhibition by exoge-
nous NO via ET-1-mediated superoxide production and
subsequent formation of peroxynitrite (ONOO?).
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in 4-week-old lambs receiving inhaled NO for 24 h (54). Upon
acute withdrawal of NO, PVR increased by 77.8%. In contrast,
there was no significant increase in PVR in animals infused
with PD156707, an ET, receptor antagonist (54). ET-1 was
found to induce superoxide production in SMCs isolated from
these 4-week-old lambs, which, in the presence of the exoge-
nous NO, is likely to form peroxynitrite (102). It was suggested
that the peroxynitritethen diffuses into the adjacent ECs where
it nitrates and inhibits eNOS protein (102). Nitrated eNOS
protein was detected in lung tissue of lambs that received in-
haled NO, but was reduced in animals treated with PD156707
(102). Therefore, ET, receptor antagonism may be beneficial
in the prevention of rebound pulmonary hypertension upon
acute NO withdrawal. Figure 4 demonstrates one potential
mechanism of eNOS inhibition by exogenous NO.

ANTIOXIDANT THERAPY

ET-1 stimulated fetal pulmonary arterial SMC prolifera-
tion via an induction of ROS, which was prevented by treat-
ing the cells with ascorbic acid, an antioxidant (101). Higher
concentrations of ascorbic acid induced apoptosis in these
cells (101). Similarly, antioxidant treatment (94) or overex-
pression of catalase (13) has been shown to reduce viability
and induce apoptosisin other vascular SMCs. Antioxidant treat-
ment may therefore prove useful in the prevention or reversal
of ET-1-induced vascular remodeling seen in PPHN. How-
ever, the effects of antioxidants on other cell types, especially
fetal pulmonary arterial ECs, have yet to be determined. There
is currently no available data regarding the effects of antioxi-
dant treatment on human pulmonary hypertension, although
the ductal ligation lamb model of PPHN should prove useful
in determining the efficacy of this approach.

Antioxidants may also aid inhaled NO therapy by reducing
superoxide-mediated peroxynitrite formation. In pulmonary
arteries isolated from PPHN lambs, pretreatment with SOD
enhanced the relaxation to an NO donor (90). In PPHN ani-
mals, treatment with recombinanthuman Cu/Zn SOD produced
selective pulmonary vasodilation. Furthermore, the pulmonary
vasodilatory effect of inhaled NO was enhanced in combina-
tion with Cu/Zn SOD (90). These events are presumably due
to an increased bioavailability of NO, both endogenous and
exogenous, by lowering superoxide-mediated peroxynitrite for-
mation. Increased superoxide production mediated by ET-1
(102) and by NO (85) is likely to make a significant contribu-
tion to rebound pulmonary hypertension in PPHN patients un-
dergoing inhaled NO therapy, due to peroxynitrite-mediated
eNOS inhibition. Therefore, inhaled NO therapy in combina-
tion with antioxidant treatment may also help prevent the in-
crease in PVR upon acute NO withdrawal.

CONCLUSION

Relatively little is known about the role of ROS in signal-
ing pathways mediated by other growth factors within the
pulmonary circulation. However, it is clear that ROS play a
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significant role in the ET-1-mediated vascular remodeling seen
in diseases such as PPHN. Further studies are now required to
identify downstream targets for these signaling molecules. As
ROS apparently play a central role both in vascular remodel-
ing and in endothelial dysfunction in pulmomonary hyperten-
sive disorders, it is likely that antioxidant therapy may repre-
sent a useful therapeutic tool. In addition, inhaled NO in
conjunction with ET, receptor antagonists or with antioxi-
dants may prove effective in stimulating pulmonary vasodila-
tion while maintaining normal endothelial function.
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ABBREVIATIONS

AP-1, activator protein-1; BAEC, bovine aortic endothelial
cell; bFGE, basic fibroblast growth factor; cGMP, cyclic GMP;
EC, endothelial cell; ECE-1, endothelin-converting enzyme-1;
eNOS, endothelial nitric oxide synthase; ET-1, endothelin-1;
HO-1, hemo oxygenase-1; H,0,, hydrogen peroxide; HUVEC,
human umbilical vein endothelial cell; MAP, mitogen-activated
protein; NFkB, nuclear factor-kB; NO, nitric oxide; NOS, nitric
oxide synthase; PDGE platelet-derived growth factor; PPHN,
persistent pulmonary hypertension of the newborn; PVR, pulmo-
nary vascular resistance; PYK2, proline-rich tyrosine kinase 2;
ROS, reactive oxygen species; SMC, smooth muscle cell; SOD,
superoxide dismutase; VEGF, vascular endothelial growth factor.
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